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ABSTRACT 
 

One of the simplest mathematical models for population growth, the Verhulst logistic curve, is 
provided to make some prediction on the curve growth of Covid-19 pandemic spread. However, due 
to the “rigidity” of the logistic curve, a precise forecast can be done only under some very special and 
well-determined conditions, such as in the case of the time evolution of the infection in China, or, 
maybe, for seasonal flues. In general, taking into  account the halo of randomness associated to each 
reported daily data and treating the latter as a  value of the Brownian motion, we can replace the logistic 
behavior with a theoretical time series, fairly approximating the real data series. The day of the 
overlapping between theoretical and real series is what we were looking for, as we show applying this 
method to Lombardy and its more affected cities: Bergamo, Brescia and Milan. To shorten the 
calculations to obtain the theoretical values, a linear approximation is provided, a sort of geometric 
tangent to the data curve in the crucial day, able to dominate the data of the successive evolution of the 
infection.  

 
 
 
Introduction 
 

Many models have been introduced in scientific literature or are underway around the world to describe 
and try to interpret covid-19 growth and the burden of infected people and deaths. Some of these 
models involve such parameters that there is in turn the need for a model to evaluate them, others 
request an impressive level of detail in the modeling of social and spatial interactions. It’s surely 
important to think about age groups and context of interactions for respiratory infections, but it should 
be avoided the risk, focusing too much on individual-level social behavior, of adding complexity 
without obtaining more predictability. Among the models which are aimed to give a “dynamics” to the 
growth of pandemic, interesting are those of SEIR (Susceptible, Exposed, Infectious, or Recovered) 
type, based on an ordinary differential equations system. We too prefer something similar to a dynamic 
model, because the general objective of all models should be, in our opinion, not only to be applicable 
to the description of a breakout and its diffusion but also to make some predictions useful for providing 
quantitative reference parameters to decision makers, in order to manage and possibly control the 
evolution of infection. Starting  from the simplest model that can give predictions, e.g. with a single 
differential equation instead of a system of them, we limit ourselves to the search for the simplest 
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dynamics able to foresee some important characteristics such as the maximum number of infected 
people and from which day, starting from the first observed cases, to give a reliable forecasting model. 
The simplest model is the logistic model, that can give information through the “growth function” and 
generates the dynamics, as well as the quadratic map in the May’s model. The logistic curve represents 
the growth of the population of a single species (animals, plants and also viruses) and is the integral of 
the differential equation of Pierre Verhulst, a mathematician who in 1838 corrected the exponential 
growth, therefore unlimited, proposed by Thomas Malthus in “An Essay on the Principle of 
Population” (1798). The latter actually intended to warn the Economy - he had read Adam Smith’s 
“The Wealth of Nations” (1776) - of the problem of the exhaustion of physical resources. A basically 
unheard topic from the mainstream as up to the present day, but that’s another story.  

 
1. The population growth 

Let N be the number of individuals in a population and ΔN is the change that occurs after a time Δt, 
the quantity 1/Δt (ΔN/N) is the average growth rate relative to the time interval Δt. Although N has 
integer values, let’s assume to be a continuous and derivable function of time t, N = N(t), so that we 

can define the instantaneous growth rate: lim
!"→$

	 %
!"
%&'
'
&, which, if it is constant value, a, immediately 

gives rise to the equation dN/dt = a N. It has as solution N = N0 ea (t -t0), which is the exponential growth 
of Malthus, where N0 is the population at the instant in which the observation begins, t0. Since the 
exponential growth of a population have never been observed, the Malthus model has been revised in 
order to take into account a sort of “social friction” that occurs when the population grows (insufficient 
space, availability of resources, difficulty of reproduction). 

We can also assume that, for each kind of population, there is a feasible maximum P for the number 
of individuals such that once that maximum is exceeded, the population begins to decrease: 

N > P           a < 0. 

The easiest way to introduce this “limiting” factor is to assume that the growth rate is not constant but 
depends linearly on the difference between the population at the instant t and the maximum population 
P, 

a = b (P - N), con b > 0,  and then 

dN/dt = bN (P - N) = bPN – bN2  = rN - qN2 , 

where r = b P   and   q = r/P   is the coefficient of the quadratic term that corrects the exponential 
trend, which would occur in its absence. The correction operates as a term of mortality, which translates 
the social friction within the population. 

Thus, we have the logistic equation of Verhulst, which historically is written: 

1) dN/dt = r N (1 - N/P). 
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The function N (1- N/P) is called the growth function and P, in Ecology, is the carrying capacity. 

The growth rate depends on the reproductive capacity of the species, the carrying capacity of the 
environment. 

The solution of the logistic equation is the “logistic function” 

      N(t) =	 !"!	$	"#

!%"$	($"#'()
		,  

where N0 is the population at the time the observations begin, t0. The carrying capacity is an asymptotic 
value, not actually achieved by the population. In fact, if one divides by N0 e rt the numerator and 
denominator to the second member, gets the expression for the solution 

 2)    N(t) = !
(%	*	$%"#

 , 

where h = !	–	$!
$!

 , and therefore  𝒍𝒊𝒎
𝒕→#

𝑵(𝒕) = P. 

Each population tends to balance the environment. The equilibrium solutions, which are obtained by 
canceling the second member of the logistic equation, are: N = 0 and N = P. As seen in Fig. 1, where 
k is our P, each solution tends to the carrying capacity P regardless of the number of individuals N0 

who constitute the population at the initial instant t0, provided that N0 is higher than the “critical 
minimum”, below which the population cannot grow. 

 

 

 

 

 

 

 

 

 

Fig. 1 Graph of the solutions of 1) corresponding to different initial data N0 

If the number of individuals N0 is less than the carrying capacity P, then the solution is the curve - 
one of those below N = N0 = k, in Fig.1 - which by its shape is called “sigmoid”. 
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2. Some properties of the logistic function 
 

Let’s rename the function N(t) with the more familiar, in the differential calculus, x(t); and x(t0) is the 
value of population - e.g., persons infected by covid-19 - at the initial time t0, that is the time in which 
observations start. Thus, we can rewrite (2), remembering that h > 0 and then we can set h = e ln (h), as 

(2’)     x(t) = P/(1+ eln (h) - rt). 

In Fig. 2 one finds graphs of a logistic curve and of its growth velocity, 

 

Fig. 2. The black curve is the logistic function for x0 < P and the red curve is its growth rate (the first derivative 
of the logistic function). On the abscissa, the time for both curves. In ordinate, the number of individuals for the 
black curve; the growth rate, i.e. the percentage change, for the red curve. 

Two populations of the same species and with the same growth function but with different carrying 
capacity evolve along two congruent sigmoids, i.e. in some sense “parallel”.  

The analysis of function 2’), i.e. the calculation of its derivatives, shows us its inflection points and 
enables us to realize that the peak of the red curve is obtained just where the black one has an 
inflection; the corresponding population to this point - a day, if one speaks of covid-19 -  is the half 
of the carrying capacity, that is, 

xmax = P/2, 

where, by xmax we denote the population corresponding to the maximum growth rate or, for the logistic 
curve, the population at the corresponding inflection point. The latter does not depend on the value of 
the initial population x0 = x(0); and all the sigmoids which have the same carrying capacity have the 
same inflection point. For x = P/2, the maximum growth rate vmax is given by 

vmax = rP/2[1-(1/P) P/2] = rP/4. 
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The linearized stability analysis of the equilibrium solution x* = P, the other x = 0 is a trivial case, 
leads to the equation 

d/dt [x(t)] = r (1- 2x/P) x,  

that, in a neighborhood of x* = P, becomes 

d/dt x(t) = - rx               x(t) = x0 e -rt,  

that is, the equilibrium solution is stable and “attractive” (as shown in Fig. 1). 

The time Tr = 1/r is called the characteristic return time (May, 1976): it is the time needed to restore 
the previous population level after a disturbance that has altered (reduced) the number of individuals. 

Oscillatory solutions (delayed logistic function). The population capable of reproducing itself at time 
t is that which, generated in an earlier time t - δ, is still presents at t. If this delay is introduced in the 
growth function, the “quality” of the dynamic changes; in fact, the analysis of linearized stability in a 
neighborhood of x* = P shows that there are values of δ for which solution x* from stable becomes 
unstable. If we denote with δ the “critical” value of the transition from stability to instability, then it 
can be shown that this change of stability is a sufficient condition for the old solution, which has 
become unstable, to be flanked by new, stable ones, in a neighborhood of values δ > δ.  

The change in stability has generated new solutions, that is, has produced a bifurcation. When the 
bifurcation occurs for values greater than the critical value δ it is called supercritical bifurcation; the 
new solutions have an oscillatory character and their trajectories are superimposed on the sigmoid, 
deviating from the latter curve precisely at its upper “elbow”, the greater the deviation the greater the 
value of δ. 

 

 

3. Looking for a predictivity 
 

The main problem in a deterministic  prediction of population growth is about the possibility to use the 
logistic function as a simple tool to forecast the behavior in time of the observed phenomenon, like, in 
our case, the growth of infected people in a country or in some areas (regions, cities) of particular 
interest (e.g. the situations of high number of cases or of deaths).  

Together with its mathematical simplicity, the logistic function, widely used in many sciences of life, 
couples a substantial rigidity in fitting with the experimental data, mainly due to the linearity of the 
argument of the exponential: ln (h) - rt. Anyway, a question reported in many scientific or data 
collecting sites during the pandemic has been if and when the Covid-19 curves would flatten out. Is it 
possible to deliver some forecast useful to take timely decisions for health and administrative 
management of outbreak? And with an anticipation of how many days; or, better, how many days after 
the “initial time”? 
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The behavior of some of the most covid-19 infected countries in the world at April seem to confirm a 
sigmoid behavior (see, Fig. 3.). 

 

 

Fig. 3 Each curve starts from hundred cases registered, as WHO requires, and have all begun to flatten after 
13th of April 2020. Source: Johns Hopkins, Medicine & Nature https://coronavirus.jhu.edu/data/new-cases 

Less “regular” the behavior of new additional cases every day, that is, the rate of growth of the infection 
(see Fig. 4)  

 

 

Fig. 4 Confirmed new cases for each day 
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Both graphs of Fig. 3, 4 represent a description of the situation such as it has evolved; but have 
substantially failed our attempts to use the logistic function as a tool to give a reliable answer to the 
above underlined question. For China (Hubei), the peak of velocity, so sharp, has given the day 
corresponding to the inflection point of the sigmoid - 10th of February, 42708 cases - and therefore 
yielding an estimate of the carrying capacity P = 85.416 cases. A very good estimate because until July 
9 the confirmed cases by the WHO were 85.445, at a daily growth rate around 5 per ten thousand, with 
the curve that has been in its full asymptotic behavior since the last day of May. Moreover, because 
the isolated peak character could have been recognized just a few days later, the above prediction could 
have been confirmed 27 days after the first registration of the infection by National Health Authority. 

But the “confirmed new cases” graphs reported in Fig. 4 for the other countries are enough to show 
that China was an exception, probably due to the special strict rules adopted by the authorities; anyway, 
the best fit of the data with the logistic curve, as in the case of China, could turn useful when, studying 
one of those epidemies which periodically hit many areas of our planet, like flus do, we can promptly 
recognize an “isolated” peak in the epidemic growth rate. Otherwise and in general, is a forecast 
possible, and with how many days of advantage? 

 

 

4. Starting from data 
 

Lombardy, the most populous and rich region of Italy, has been fiercely hit by covid-19. At the 
17th of May: 84,844 infected, 37,6% of infections of all Italy; 15,519 deaths (48,6%) and a 
mortality ratio of 18,3%, the highest in the world, compared with regions of a similar demographic 
weight (for example, at the same day: NYCity: 192,990 case; 17,031 deaths and 8,8% mortality 
ratio). 

The problem of applying the logistic model to the data isn’t to know P and the rate r (see, (2’)), 
because also having a little more than twenty daily data one can try to guess the next behavior and 
obtain the two mentioned values by successive attempts, in a sort of recursive process, but the 
laboriousness and the questionability of this method. In a nutshell, the attempts done have 
convinced us that reliable results could be obtained with a less rigid function than the logistic one, 
(2’), such as the “delayed” logistic function (see sect. 1) – an additional unknown parameter - or a 
parametrized family of logistic functions. 

That is, mathematically more complicated methods. Because we have elected Occam’s razor as 
our polar star, is there an easier method that, starting from the daily data available from the first 
thirty, or less, days, enables us to a reliable prediction on the successive evolution? 

Here, the table 1 of daily data and, immediately after, the graphs corresponding to those data 
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In Fig. 5 the graphs are obtained dividing the value of each daily data by the number of 
the inhabitants of the corresponding city.  
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Fig. 5 In the graphs every dot represents the total number of infected people divided by the number 
of inhabitants, xn/N, where N = 1390434 (Milan, blue), N = 122383 (Bergamo, yellow), N = 
199415 (Brescia, green). 

In order to make a comparison of data with respect to the different population of 
infected these values can be normalized substituting the value xn of the number of 
infected at the n-th day by the normalized number, xn: 

xn = (xn − xmin)/(xmax− xmin),  where xmin = min(xn)  and  xmax = max(xn),  (n=1,…,N).                           

The normalized data are shown in Fig. 6 

 

                                                                                                                                               

 

 

 

 

 

 

 

Fig. 6 Curves obtained normalizing data (see above): blue (Milan); yellow (Bergamo); green (Brescia); red 
(Lombardy) 
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5. Predictability, at a first glance, based on Brownian motion  
 

Although many of the curves in the previous figures recall a logistic sigmoid, we still believe that the 
logistic model might be feasible only when there are some special conditions, as we have seen that 
none of the velocity growth graph exhibits a “Chinese” peak. However, some features of the logistic 
growth can be retained such as the total number of infected people N (limit value of the logistic 
sigmoid) and the first day where a trustable prediction can be performed (inversion point of the 
logistic).  In this section we provide a forecasting model able to determine:  

1)   the value towards which tends the total number of the infected people, P;  

2) the first day from which the forecast 1) applies. 

Let xn be the total number of cases in the n-th day, then we define the mean of the numbers xk, when 
k = 1, 2, .. , n , as usual,   

                                                 μn = ( (
		+		
∑ 𝑥,-
( ),  

and let’s denote the standard deviation of the set {x2 , .., xn}, by 

																																												𝜎n   =			) %
		)		
∑ 	(𝑥* − 𝜇)))
* 		,		n ≥ 2. 

Each daily data xk is affected, for many reasons easy to understand, by an inevitable halo of 
randomness; thus, we’ll treat the infected time series as the values of a Brownian motion.  

The botanist Robert Brown observed minute particles, ejected by the pollen grains suspended in water 
he was studying under a microscope, executing a jittery motion: a Brownian motion. By repeating the 
experiment with particles of inorganic matter he was able to rule out that the motion was life-related 
(1827).  
 

Albert Einstein provided a mathematical solution of the problem, mainly as a way to indirectly confirm 
the existence of atoms and molecules  
Einstein recognized that Brownian particles as a collective set, because Mechanics is not able to follow 
the motion of each particle, obey to a diffusion equation whose solution gives the density of the 
Brownian particles, ρ(x,t), at any position in space x and any instant in time t.  

This solution is a gaussian type curve, well known to be characterized by its mean μ = 0 and the square 
deviation 𝜎	that, in this model, linearly depends on the diffusion coefficient of the collective motion 
and on time. In fact, when time grows the curve enlarges itself, in such a way that at successive times 
t1 < t2 < t3 ... the density of Brownian particles becomes flatter and flatter. 

If one passes from the scheme in which the time is a continuous variable, like in the Einstein’s 
reasoning, to a discrete one, more proper to describe the daily number (discrete time) of infected, it  
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can be shown that each new step – the n-th theoretical value to be compared with the n-th data - in the 
time interval dt is characterized by the sum of two terms: a linear trend depending on the data average 
μ and on time interval dt and a term depending on the standard deviation 𝜎 and the square root of time 
interval. 

This means that two consecutive values of the series have a difference given by  
 

 

 

For the time interval, dt, we set  

dt = 0.00273973, 

where 0.00273973 = 1/365, that is, the time interval of one day in a year; then, the data of Table1 
can be approximated by the following sequence: 
 

x*n = x1,                n = 1, 
(3) 

x*n = x*n-1 + x*n-1 (0.00273973 μn-1 +	𝜎n-1 √0.00273973 ),   n ≥ 2, 
 
In Fig. 7 are represented the graph of the values given by approximation (3) together with the sequence 
of data drawn from the third column of Table 1 (Bergamo); analogue graphs can be obtained for the 
other columns (Lombardy, Milan and Brescia). 

Coming back to (3), each term x*n depends, for n ≥ 2, on the knowledge both of the mean value μn-1 

and the standard deviation 𝜎n-1 of all the data of the day preceding the n-th ones.  

As n increases, the sequence (3) will tend to a limit value x*l ; in that limit it will be: 
  

(3’)                           x*n ≈ x*n-1 =  x*l           and            0.00273973 μn-1 ≈ 0; 

 

correspondingly the standard deviation too tends to zero  lim
	"∗!	→	"∗𝑙

𝜎𝑛 	=  0. 

There is no need of a rigorous proof of the limit asserted in (3’) because it can be caught at a glance. 

In the worst case, the sequence (3) could oscillate tending to x*l ; however, our interest is that the 

difference between two successive terms x*n and x*n-1 – whether the oscillations exist or not – reduces 
itself under  a fixed limit.
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Fig. 7 Blue dots are the values estimated with (3), yellow dots (Bergamo) are the data from the third column 
of Table 1 
 
Looking at Fig. 7 it’s evident that the two sequences almost coincide starting from about the 20th day, 
showing that approximation (3) is fair enough, and mainly, that a day exists –  n* = 20, for Bergamo  
– such that, starting from it, the growth of cases could be reliably dominate by a suitable straight line, 
and the same will happen for the graphs relative to the other columns of Table 1.  

The path to follow to determine such a straight line could be to impose that the modulus of the 
difference between a data of the sequence, xn , and the corresponding value given by formula (3),  x*n, 
is less than a fixed number ε 

 (4)                                                     ǀxn – x*nǀ < ε	;	
	

then, let be n* the first day for which (4) is satisfied, from that day we can write the sequence 
  
 

 (5)           x**n = xn*  +  (0.00273973 μn  +		𝜎n √0.00273973 ) (n – n*),   n > n*, 

that represents the straight line passing through the point 

                                                                           (n*, xn*) 
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and allows to perform an estimate (for excess) of the cases for all n after n*. In the equation (4) the 
value ε can be estimated by a least square method, but it is enough to take as n* the first day where 
the standard deviation is less than 0.01 (see Fig. 8).  

By this way we can provide a straight line of prediction for the three cases we are studying, that is, for 
Bergamo (Fig. 9), Brescia (Fig. 10) and Milan (Fig. 11). 
 

 
 
 

 
Fig. 8: Standard deviation (percentage) of Milan (blue), Bergamo (yellow), Brescia (green), Lombardy (red).
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Fig. 9: Straight line of prediction for Bergamo: starting from n∗ = 20, prediction points from (5) in 
orange; data series in blue 
 
 

 

12 000 
 
10 000 
 
 8000 
 
 6000 
 
 4000 
 
 2000 
 
 

10 20 30 40 50 
 

Fig. 10: Straight line of prediction for Brescia: starting from n∗ = 26, prediction points from (5) in 
orange; data series in blue
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Fig. 11: Straight line of prediction for Milan: starting from n∗ = 38, prediction points from (5) in 
orange; data series in blue 
 
 
Results and discussion 
The logistic model is characterized by many advantages but also well-known limits. 
However, preferring simplicity, we did not use more flexible but also mathematically more 
complicated models and probably capable of a more precise description of the covid-19 
evolution and better predictive power. 

The theoretical n-series (5) constructed from the n-data, taking in account the substantially 
random character of the data, fit well with data series, but oblige to perform some calculations 
not difficult but cumbersome when n grows. A calculus program could overcome this aspect. 

If one hasn’t got such a program, applying the “straight line prediction” yields interesting 
results. In the provided examples, on the 50th day, i.e. 9 May because for the initial day has 
been assumed 11th of March, only in the case of Bergamo the percentage difference between 
forecast value and data is about 9%; in the other two cases - Brescia and Milan - the 
percentage difference is under 2% (see Fig.10 and 11). On the whole, a not scarce 
approximation, especially when compared with many “official” dashboards that record data 
and represent them in figure such as Fig. 4, in which the “straight lines” are shown with a 
slope of 10%, 33% and 100% per day and a consequent great deviation from the real values. 

Another significant feature of the latter approach, in the performed examples, is that day from 
which one can provide the prediction is, in the worst case (Milan), n* = 38, i.e., 46 days after 
the achievement of the first 100 cases, as WHO requires. A questionably timely prediction, 
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the latter, even though after that day, 22 April, the new cases added up to 9 July represent 
more than 40% plus. In the cases of Brescia and Bergamo, the prediction seems acceptable 
with respect to the time too, because n* = 26 for Brescia is 33 days after the starting day (4 
March); and for Bergamo n* = 20 implies 30 days after its starting point (1 March).   

Finally, our affection for the logistic curve from which we started relies on its being the more 
suggestive mathematical representation, with its asymptotic behavior, about how long the 
growth of infection lasts. An important feature, especially since many people speak of a 
“second wave” of Sars-CoV-2, ignoring that many viruses continue to live for generations in 
our environment or in our body, having weakened their viral load and lethality. 


