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ABSTRACT

One of the simplest mathematical models for population growth, the Verhulst logistic curve, is
provided to make some prediction on the curve growth of Covid-19 pandemic spread. However, due
to the “rigidity” of the logistic curve, a precise forecast can be done only under some very special and
well-determined conditions, such as in the case of the time evolution of the infection in China, or,
maybe, for seasonal flues. In general, taking into account the halo of randomness associated to each
reported daily data and treating the latter as a value of the Brownian motion, we can replace the logistic
behavior with a theoretical time series, fairly approximating the real data series. The day of the
overlapping between theoretical and real series is what we were looking for, as we show applying this
method to Lombardy and its more affected cities: Bergamo, Brescia and Milan. To shorten the
calculations to obtain the theoretical values, a linear approximation is provided, a sort of geometric
tangent to the data curve in the crucial day, able to dominate the data of the successive evolution of the
infection.

Introduction

Many models have been introduced in scientific literature or are underway around the world to describe
and try to interpret covid-19 growth and the burden of infected people and deaths. Some of these
models involve such parameters that there is in turn the need for a model to evaluate them, others
request an impressive level of detail in the modeling of social and spatial interactions. It’s surely
important to think about age groups and context of interactions for respiratory infections, but it should
be avoided the risk, focusing too much on individual-level social behavior, of adding complexity
without obtaining more predictability. Among the models which are aimed to give a “dynamics” to the
growth of pandemic, interesting are those of SEIR (Susceptible, Exposed, Infectious, or Recovered)
type, based on an ordinary differential equations system. We too prefer something similar to a dynamic
model, because the general objective of all models should be, in our opinion, not only to be applicable
to the description of a breakout and its diffusion but also to make some predictions useful for providing
quantitative reference parameters to decision makers, in order to manage and possibly control the
evolution of infection. Starting from the simplest model that can give predictions, e.g. with a single

differential equation instead of a system of them, we limit ourselves to the search for the simplest
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dynamics able to foresee some important characteristics such as the maximum number of infected
people and from which day, starting from the first observed cases, to give a reliable forecasting model.
The simplest model is the logistic model, that can give information through the “growth function” and
generates the dynamics, as well as the quadratic map in the May’s model. The logistic curve represents
the growth of the population of a single species (animals, plants and also viruses) and is the integral of
the differential equation of Pierre Verhulst, a mathematician who in 1838 corrected the exponential
growth, therefore unlimited, proposed by Thomas Malthus in “An Essay on the Principle of
Population” (1798). The latter actually intended to warn the Economy - he had read Adam Smith’s
“The Wealth of Nations” (1776) - of the problem of the exhaustion of physical resources. A basically
unheard topic from the mainstream as up to the present day, but that’s another story.

1. The population growth

Let N be the number of individuals in a population and AN is the change that occurs after a time At,
the quantity 1/At (AN/N) is the average growth rate relative to the time interval At. Although N has
integer values, let’s assume to be a continuous and derivable function of time ¢, N = N(t), so that we
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can define the instantaneous growth rate:Altl:mO At (7), which, if it is constant value, ¢, immediately
-

gives rise to the equation dNV/dt = a N. It has as solution N = N ¢ (t-1y  which is the exponential growth
of Malthus, where Ny is the population at the instant in which the observation begins, #. Since the
exponential growth of a population have never been observed, the Malthus model has been revised in
order to take into account a sort of “social friction” that occurs when the population grows (insufficient
space, availability of resources, difficulty of reproduction).

We can also assume that, for each kind of population, there is a feasible maximum P for the number
of individuals such that once that maximum is exceeded, the population begins to decrease:

N>P w=m a<0.

The easiest way to introduce this “limiting” factor is to assume that the growth rate is not constant but
depends linearly on the difference between the population at the instant t and the maximum population
P,

a=b (P-N),conb>0, and then
dN/dt = bN (P - N) = bPN — bN* = rN - gN?,

where r = b P and ¢ =r/P is the coefficient of the quadratic term that corrects the exponential
trend, which would occur in its absence. The correction operates as a term of mortality, which translates
the social friction within the population.

Thus, we have the logistic equation of Verhulst, which historically is written:

1) dN/dt = N (1 - N/P).



The function N (1- N/P) is called the growth function and P, in Ecology, is the carrying capacity.

The growth rate depends on the reproductive capacity of the species, the carrying capacity of the
environment.

The solution of the logistic equation is the “logistic function”
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where Ny is the population at the time the observations begin, 7. The carrying capacity is an asymptotic

value, not actually achieved by the population. In fact, if one divides by Noe " the numerator and
denominator to the second member, gets the expression for the solution
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Each population tends to balance the environment. The equilibrium solutions, which are obtained by
canceling the second member of the logistic equation, are: N =0 and N = P. As seen in Fig. 1, where
k is our P, each solution tends to the carrying capacity P regardless of the number of individuals Ny
who constitute the population at the initial instant 7, provided that N, is higher than the “critical
minimum”, below which the population cannot grow.
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Fig. 1 Graph of the solutions of 1) corresponding to different initial data Ny

If the number of individuals Ny is less than the carrying capacity P, then the solution is the curve -
one of those below N = Ny = £k, in Fig.1 - which by its shape is called “sigmoid”.



2. Some properties of the logistic function

Let’s rename the function N(t) with the more familiar, in the differential calculus, x(t); and x(to) is the
value of population - e.g., persons infected by covid-19 - at the initial time fo, that is the time in which
observations start. Thus, we can rewrite (2), remembering that 7 > 0 and then we can set h =e "™ as

(2)  x(t)=P/(1+ "B -,

In Fig. 2 one finds graphs of a logistic curve and of its growth velocity,

v

Fig. 2. The black curve is the logistic function for xo < P and the red curve is its growth rate (the first derivative
of the logistic function). On the abscissa, the time for both curves. In ordinate, the number of individuals for the
black curve; the growth rate, i.e. the percentage change, for the red curve.

Two populations of the same species and with the same growth function but with different carrying
capacity evolve along two congruent sigmoids, i.e. in some sense “parallel”.

The analysis of function 2), i.e. the calculation of its derivatives, shows us its inflection points and
enables us to realize that the peak of the red curve is obtained just where the black one has an
inflection; the corresponding population to this point - a day, if one speaks of covid-19 - is the half
of the carrying capacity, that is,

Xmax = P/Z,

where, by Xmax we denote the population corresponding to the maximum growth rate or, for the logistic
curve, the population at the corresponding inflection point. The latter does not depend on the value of
the initial population xo = x(0); and all the sigmoids which have the same carrying capacity have the
same inflection point. For x = P/2, the maximum growth rate Umax is given by

Unax = rP/2[1-(1/P) P/2] = rP/4.



The linearized stability analysis of the equilibrium solution x* = P, the other x = () is a trivial case,
leads to the equation

d/dt [x(0)] = 7 (1- 2x/P) x,

that, in a neighborhood of x* = P, becomes

d/dt x(t)=-rx == x(t)=x0e ",

that is, the equilibrium solution is stable and “attractive” (as shown in Fig. 1).

The time T, = 1/r is called the characteristic return time (May, 1976): it is the time needed to restore
the previous population level after a disturbance that has altered (reduced) the number of individuals.

Oscillatory solutions (delayed logistic function). The population capable of reproducing itself at time
t is that which, generated in an earlier time ¢ - 9, is still presents at 7. If this delay is introduced in the
growth function, the “quality” of the dynamic changes; in fact, the analysis of linearized stability in a
neighborhood of x* = P shows that there are values of & for which solution x* from stable becomes
unstable. If we denote with 9 the “critical” value of the transition from stability to instability, then it
can be shown that this change of stability is a sufficient condition for the old solution, which has
become unstable, to be flanked by new, stable ones, in a neighborhood of values & > §.

The change in stability has generated new solutions, that is, has produced a bifurcation. When the
bifurcation occurs for values greater than the critical value 9 it is called supercritical bifurcation; the
new solutions have an oscillatory character and their trajectories are superimposed on the sigmoid,
deviating from the latter curve precisely at its upper “elbow”, the greater the deviation the greater the
value of 0.

3. Looking for a predictivity

The main problem in a deterministic prediction of population growth is about the possibility to use the
logistic function as a simple tool to forecast the behavior in time of the observed phenomenon, like, in
our case, the growth of infected people in a country or in some areas (regions, cities) of particular
interest (e.g. the situations of high number of cases or of deaths).

Together with its mathematical simplicity, the logistic function, widely used in many sciences of life,
couples a substantial rigidity in fitting with the experimental data, mainly due to the linearity of the
argument of the exponential: /n (h) - rt. Anyway, a question reported in many scientific or data
collecting sites during the pandemic has been if and when the Covid-19 curves would flatten out. Is it
possible to deliver some forecast useful to take timely decisions for health and administrative
management of outbreak? And with an anticipation of how many days, or, better, how many days after
the “initial time”?



The behavior of some of the most covid-19 infected countries in the world at April seem to confirm a
sigmoid behavior (see, Fig. 3.).
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Fig. 3 Each curve starts from hundred cases registered, as WHO requires, and have all begun to flatten after
13th of April 2020. Source: Johns Hopkins, Medicine & Nature https://coronavirus.jhu.edu/data/new-cases

Less “regular” the behavior of new additional cases every day, that is, the rate of growth of the infection
(see Fig. 4)
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Fig. 4 Confirmed new cases for each day



Both graphs of Fig. 3, 4 represent a description of the situation such as it has evolved; but have
substantially failed our attempts to use the logistic function as a tool to give a reliable answer to the
above underlined question. For China (Hubei), the peak of velocity, so sharp, has given the day
corresponding to the inflection point of the sigmoid - 10" of February, 42708 cases - and therefore
yielding an estimate of the carrying capacity P = 85.416 cases. A very good estimate because until July
9 the confirmed cases by the WHO were 85.445, at a daily growth rate around 5 per ten thousand, with
the curve that has been in its full asymptotic behavior since the last day of May. Moreover, because
the isolated peak character could have been recognized just a few days later, the above prediction could
have been confirmed 27 days after the first registration of the infection by National Health Authority.

But the “confirmed new cases” graphs reported in Fig. 4 for the other countries are enough to show
that China was an exception, probably due to the special strict rules adopted by the authorities; anyway,
the best fit of the data with the logistic curve, as in the case of China, could turn useful when, studying
one of those epidemies which periodically hit many areas of our planet, like flus do, we can promptly
recognize an “isolated” peak in the epidemic growth rate. Otherwise and in general, is a forecast
possible, and with how many days of advantage?

4. Starting from data

Lombardy, the most populous and rich region of Italy, has been fiercely hit by covid-19. At the
17" of May: 84,844 infected, 37,6% of infections of all Italy; 15,519 deaths (48,6%) and a
mortality ratio of 18,3%, the highest in the world, compared with regions of a similar demographic
weight (for example, at the same day: NYCity: 192,990 case; 17,031 deaths and 8,8% mortality
ratio).

The problem of applying the logistic model to the data isn’t to know P and the rate r (see, (2)),
because also having a little more than twenty daily data one can try to guess the next behavior and
obtain the two mentioned values by successive attempts, in a sort of recursive process, but the
laboriousness and the questionability of this method. In a nutshell, the attempts done have
convinced us that reliable results could be obtained with a less rigid function than the logistic one,
(2), such as the “delayed” logistic function (see sect. 1) — an additional unknown parameter - or a
parametrized family of logistic functions.

That is, mathematically more complicated methods. Because we have elected Occam’s razor as
our polar star, is there an easier method that, starting from the daily data available from the first
thirty, or less, days, enables us to a reliable prediction on the successive evolution?

Here, the table 1 of daily data and, immediately after, the graphs corresponding to those data



Table 1: Number of Covid-19 infected

day Lombardy Milan Bergamo Broescia
Tat March TET 0 20T 0
2 1254 5Gs 243 6o
3 1520 23 372 86
4 1820 145 423 127
a5 2251 197 537 1556
G 2612 267 623 182
T 3420 361 761 413
8 4189 406 297 501
9 G469 506 1245 739
10 6791 592 1472 70
11 7280 925 1816 1361
12 8725 1146 2136 1598
13 9820 1307 2368 1784
14 11686 1661 2864 2122
15 13272 1760 3416 2473
16 14649 1983 3760 2018
17 16220 2326 3993 3300
18 17713 2644 4306 3784
19 19984 3278 4465 4247
20 22264 3804 G164 4648
21 26615 4672 HEGO 5028
22 T206 GD9G 6216 56317
23 28761 5326 G471 5O05
24 30703 5701 6728 6298
25 32346 G074 TO72 GLOT
26 348856 6922 T4GS 6931
27 37208 7469 sS060 7305
28 39415 7783 8349 TGTS
29 41007 8329 8627 8013
30 42161 867G 8664 8213
a1 43208 8011 8803 8367
1at April 44773 2522 9039 8608
2 46065 10004 2171 8767
3 47260 10391 93156 2014
4 49118 10819 9688 92180
a5 HO4GG 11230 9712 2340
G 513564 11508 9790 0467
T H2025 11787 9868 2694
8 53414 12039 9931 D909
9 54731 12393 10041 10139
10 L6048 12748 10151 10369
11 LTGGG 13214 10230 10618
12 LODG2 13680 10309 10868
13 60314 14161 10391 110568
14 61326 14418 10431 11122
15 621656 146756 10472 11187
16 63094 14952 10518 1135656
17 641356 15227 10590 11567
18 Gh381 15546 10629 11768
19 66236 15826 10689 11946
20 66971 16112 10738 12004
21 67931 16601 10793 12091
22 69092 17000 10848 1217
23 TOL6G 17277 10946 12308
24 T1266 17689 11002 12476
26 T1969 17908 11047 12540
26 T2889 18371 11113 12564
27 T3479 18559 11150 12599
28 T4348 18837 11196 12691
29 TH134 19121 11291 12806
30 ThT32 19337 11313 12861
1st May T6469 19701 11360 12929
2 TToD2 19950 11394 12999
3 77628 20068 13028
4 T8106 202564 13122
a5 TEGOG 20398 13168
G TH369 20711 13267
T 80089 20893 11622 133901
8 80723 21094 11671 13480
9 81226 21272 11717 13506
10 81607 21367 11741 13550
11 81871 21490 11791 13620
12 82004 21626 12294 13748
13 83208 21731 12318 13842
14 83820 21900 12347 13948
15 84119 21966 12371 14008
16 84518 22041 12397 14091
17 84844 22151 12443 14147

In Fig. 5 the graphs are obtained dividing the value of each daily data by the number of
the inhabitants of the corresponding city.
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Fig. 5 Inthe graphs every dot represents the total number of infected people divided by the number
of inhabitants, x,/N, where N = 1390434 (Milan, blue), N = 122383 (Bergamo, yellow), N =
199415 (Brescia, green).

In order to make a comparison of data with respect to the different population of
infected these values can be normalized substituting the value X, of the number of

infected at the n-th day by the normalized number, X;:

Xn = (xn — xmzn)/(xmax_ xmln), Whel‘e xmln = mln(xn) al’ld xmax = max(x;/l), (nZI, ...,N).

The normalized data are shown in Fig. 6
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Fig. 6 Curves obtained normalizing data (see above): blue (Milan); yellow (Bergamo); green (Brescia); red
(Lombardy)



5. Predictability, at a first glance, based on Brownian motion

Although many of the curves in the previous figures recall a logistic sigmoid, we still believe that the
logistic model might be feasible only when there are some special conditions, as we have seen that
none of the velocity growth graph exhibits a “Chinese” peak. However, some features of the logistic
growth can be retained such as the total number of infected people N (limit value of the logistic
sigmoid) and the first day where a trustable prediction can be performed (inversion point of the
logistic). In this section we provide a forecasting model able to determine:

1) the value towards which tends the total number of the infected people, P;

2) the first day from which the forecast 1) applies.

Let x, be the total number of cases in the n-th day, then we define the mean of the numbers X, when
k=1,2,..,n,asusual,

1
Hn = (T 71lxk,)a

and let’s denote the standard deviation of the set {x2, .., xn}, by

1
5= SR = pa) s nz2

Each daily data xi is affected, for many reasons easy to understand, by an inevitable halo of
randomness; thus, we’ll treat the infected time series as the values of a Brownian motion.

The botanist Robert Brown observed minute particles, ejected by the pollen grains suspended in water
he was studying under a microscope, executing a jittery motion: a Brownian motion. By repeating the
experiment with particles of inorganic matter he was able to rule out that the motion was life-related
(1827).

Albert Einstein provided a mathematical solution of the problem, mainly as a way to indirectly confirm
the existence of atoms and molecules

Einstein recognized that Brownian particles as a collective set, because Mechanics is not able to follow
the motion of each particle, obey to a diffusion equation whose solution gives the density of the
Brownian particles, p(x,f), at any position in space x and any instant in time ¢.

This solution is a gaussian type curve, well known to be characterized by its mean ¢ = 0 and the square
deviation o that, in this model, /inearly depends on the diffusion coefficient of the collective motion
and on time. In fact, when time grows the curve enlarges itself, in such a way that at successive times
t; < t2<ts... the density of Brownian particles becomes flatter and flatter.

If one passes from the scheme in which the time is a continuous variable, like in the Einstein’s
reasoning, to a discrete one, more proper to describe the daily number (discrete time) of infected, it
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can be shown that each new step — the n-th theoretical value to be compared with the n-th data - in the
time interval df is characterized by the sum of two terms: a linear trend depending on the data average

A and on time interval df and a term depending on the standard deviation 0 and the square root of time
interval.

This means that two consecutive values of the series have a difference given by

Ty, — Ty 1 =Ty _1(pn—1dt + o1 Vdt)

For the time interval, dt, we set

dt=0.00273973,

where 0.00273973 = 1/365, that is, the time interval of one day in a year; then, the data of Tablel
can be approximated by the following sequence:

X* = X1, n=1,

3)

X*1 = X*p + X1 (0.00273973 fh1 + 0,1 V0.00273973 ), n>2,

In Fig. 7 are represented the graph of the values given by approximation (3) together with the sequence
of data drawn from the third column of Table 1 (Bergamo); analogue graphs can be obtained for the
other columns (Lombardy, Milan and Brescia).

Coming back to (3), each term X*, depends, for # > 2, on the knowledge both of the mean value is-1
and the standard deviation 0,-1 of all the data of the day preceding the n-th ones.

As n increases, the sequence (3) will tend to a limit value X*¢£ ; in that limit it will be:

(3") X*, = X*, = X*L and 0.00273973 Un-1 = 0;

correspondingly the standard deviation too tends to zero lim o0, = 0.

X¥p = X*,
There is no need of a rigorous proof of the limit asserted in (3”) because it can be caught at a glance.

In the worst case, the sequence (3) could oscillate tending to X*¢£; however, our interest is that the

difference between two successive terms X *, and X *,.; — whether the oscillations exist or not — reduces
itself under a fixed limit.
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Fig. 7 Blue dots are the values estimated with (3), yellow dots (Bergamo) are the data from the third column
of Table 1

Looking at Fig. 7 it’s evident that the two sequences almost coincide starting from about the 20th day,
showing that approximation (3) is fair enough, and mainly, that a day exists — »* = 20, for Bergamo
— such that, starting from it, the growth of cases could be reliably dominate by a suitable straight line,
and the same will happen for the graphs relative to the other columns of Table 1.

The path to follow to determine such a straight line could be to impose that the modulus of the
difference between a data of the sequence, X, and the corresponding value given by formula (3), x*,,

1s less than a fixed number €

(4) Xn — x4l < E;

then, let be n* the first day for which (4) is satisfied, from that day we can write the sequence

(5) x*%, = X« + (0.00273973 wn + 0,v0.00273973) (n — n*), n>n*,

that represents the straight line passing through the point

(1%, Xn-)
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and allows to perform an estimate (for excess) of the cases for all 7 after #*. In the equation (4) the

value € can be estimated by a least square method, but it is enough to take as 7 * the first day where
the standard deviation is less than 0.01 (see Fig. 8).

By this way we can provide a straight line of prediction for the three cases we are studying, that is, for
Bergamo (Fig. 9), Brescia (Fig. 10) and Milan (Fig. 11).

10.08

50

Fig. 8. Standard deviation (percentage) of Milan (blue), Bergamo (yellow), Brescia (green), Lombardy (red).
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Fig. 9: Straight line of prediction for Bergamo: starting from n* = 20, prediction points from (5) in

orange; data series in blue
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Fig. 10: Straight line of prediction for Brescia: starting from n* = 26, prediction points from (5) in

orange; data series in blue
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Fig. 11: Straight line of prediction for Milan: starting from n* = 38, prediction points from (5) in
orange; data series in blue

Results and discussion

The logistic model is characterized by many advantages but also well-known limits.
However, preferring simplicity, we did not use more flexible but also mathematically more
complicated models and probably capable of a more precise description of the covid-19
evolution and better predictive power.

The theoretical n-series (5) constructed from the n-data, taking in account the substantially
random character of the data, fit well with data series, but oblige to perform some calculations
not difficult but cumbersome when n grows. A calculus program could overcome this aspect.

If one hasn’t got such a program, applying the “straight line prediction” yields interesting
results. In the provided examples, on the 50" day, i.e. 9 May because for the initial day has
been assumed 11%" of March, only in the case of Bergamo the percentage difference between
forecast value and data is about 9%,; in the other two cases - Brescia and Milan - the
percentage difference is under 2% (see Fig.10 and 11). On the whole, a not scarce
approximation, especially when compared with many “official” dashboards that record data
and represent them in figure such as Fig. 4, in which the “straight lines” are shown with a
slope of 10%, 33% and 100% per day and a consequent great deviation from the real values.

Another significant feature of the latter approach, in the performed examples, is that day from
which one can provide the prediction is, in the worst case (Milan), n* = 38, i.e., 46 days after
the achievement of the first 100 cases, as WHO requires. A questionably timely prediction,
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the latter, even though after that day, 22 April, the new cases added up to 9 July represent
more than 40% plus. In the cases of Brescia and Bergamo, the prediction seems acceptable
with respect to the time too, because n* = 26 for Brescia is 33 days after the starting day (4
March); and for Bergamo n* = 20 implies 30 days after its starting point (1 March).

Finally, our affection for the logistic curve from which we started relies on its being the more
suggestive mathematical representation, with its asymptotic behavior, about how long the
growth of infection lasts. An important feature, especially since many people speak of a
“second wave” of Sars-CoV-2, ignoring that many viruses continue to live for generations in
our environment or in our body, having weakened their viral load and lethality.
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