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ABSTRACT 

The severity of the two deeply correlated crises, the environmental and the economic ones, needs 
to be faced also in theoretical terms; thus, the authors propose a model yielding a global 
“stationary state”, following the idea of a “steady-state economics” by Georgescu-Rogen and 
Herman Daly, by constructing only one dynamical system of ecological and economic coupled 
variables. This is possible resorting to the generalized Volterra model, that, translated in the 
Hamiltonian formalism and its Hamilton equations, makes possible to “conjugate” every pair of 
variables, one economic, the other one ecological, in describing the behavior in time of a unique 
dynamical system.  
Applying the model to two of the most relevant ecological-economic pairs of variables leads to a 
suggestive geometry in the “phase space” of the model: the trajectories are curves wrapping a 
“donut”, their set is the “stationary state” we were looking for. Those trajectories are “quasi-
periodic motions”, characterized by two frequencies, for whose values a good estimate is provided in 
the “small oscillations” approximation. A more general, but more abstract, “stationary state” is 
defined by virtue of the stability of the solutions of the Hamilton equations, just in this article 
recognized. 
The global character of the model is assured when world data of variables are used. A very 
interesting feature of the model is that the path to a scenario of sustainability is given in terms 
analogous to the Newtonian Dynamics.  
 
Keywords: unique dynamical system, Volterra generalized model, “conjugate” Hamiltonian pairs, quasi-
periodic motions, Lyapunov stability, global stationary state.  
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Introduction  
Nicholas Georgescu-Rögen, who had previously tried to give thermodynamic laws to Economics to 
better take in account the consumption of natural resources (1971) [12a)], and his disciple Herman 
Daly proposed in the last Seventies a “Steady State” (1977) as a global objective for a sustainable 
economic scenario ([12b)] [13]), a kind of answer to avert the catastrophe forecasted by the well-
known report “A limit to growth” (1972), in which “the predicament of mankind” was illustrated in 
terms of “bell” curves - the death of the global system when escapes control even only one of the 
model fundamental parameters, like population, food, energy and pollution.  

The steady state proposal raised a decadal debate (see, e.g. [I]), interweaved with the 
development of theories and models coupling ecological and economic issues, which had started 
from Gordon’s model of the impact of fisheries on the economics of open access (1954). The 
bioeconomic modeling, stemming from Gordon’s model as well as from other inspirations, is 
characterized, mainly, by a dyadic conception in which the dynamics of coupled ecological-
economic systems is interpreted in term of an “interaction” between the two separated systems 
(see, e.g. [II],[III],[IV],[V]).  

Here, on the contrary, the authors propose a global “stationary state” following the generalized 
Volterra model, translated in the Hamiltonian formalism. This makes possible to “conjugate” every 
pair of variables, one economic, the other one ecological, in describing the time evolution not of two 
separated though interacting systems but as a unique dynamical system, as the two crises seem to 
strongly demand.  

When the model is applied to the two pairs, N = 2, of conjugate variables - GDP/Total energy 
consumption and Complexity/CO2 emissions - it is possible a suggestive geometry in its “phase 
space”: the trajectories of the entire system are curves wrapping a torus, whose set is the “stationary 
state” we were looking for. Those trajectories are “quasi-periodic motions”, characterized by two 
frequencies for the values of which a good estimate is given in the “small oscillations” 
approximation, as it is allowed by the reported data in Sect. 1.  
The importance of the chosen variables is deeply rooted both in Economic and Ecological researches. 
The global character of the model is assured when the data of variables are taken from the available 
world data handbooks; the model obviously works also for world geo-economical subareas.  

Beyond the constraints applied to the N = 2  model so that it can work, the stability of the solutions, 
here recognized for the Volterra generalized model (N > 2) in the Hamiltonian version, allows us to 
construct a more general “stationary state”, albeit more abstract, richer than a “steady state” not only 
as a mathematical representation but also for an in principle wider choice of values available for the 
ecological-economic variables. 

Last but not least, the model provides a tool according to which even the evolutions of an economic-
ecological system over time can be described in a similar way to those typical of physics; and, 
mainly, a theoretical path moves towards a sustainable economy or, better, to an overall 
sustainability.  

1. The double crisis and the need of a “global stationary state”   

The upsetting consequences of the environmental crisis, mainly of the climate change, are 
struggling to become part of public knowledge and of the awareness of both the individuals and 
the human society (for a brief survey see [1], [2]). In some previous papers global data have been 
given, and their sources, showing the severity of the environmental crisis ([2]): from the land 
grabbing, even for the freshwater resources ([3 a), b)]), to the spreading of drought ([4]), to the 



degradation of coral reef ([5 a), b)]). And, above all, what has been called the greatest threat of 
this century, the climate change, or rather, the already occurred transition to climate instability 
([6], [7a), b), c)]). On the other hand, the mainstream Economists seem deaf to the predicament 
of environment, despite that the climate instability and its dramatic consequences will last for the 
coming decades; no longer, then, an emergency, but a context inside which the economic 
policies should be evaluated. A remarkable exception has been, more than ten years ago, the 
Stern Report about severe and global damages on GDP due to climate change in a “business as 
usual” trend [8]. 

The current crisis of capitalism is a crisis of overproduction, whose peculiar quantitative feature, 
due to technological innovation in the global market, makes insurmountable the contradiction 
between the increase in supply and the market's ability to absorb it ([1], [9]). Are there new 
economic ideas to manage the two crises? “Weather forecasts” models have been recently 
proposed by the Institute for Economic Complexity (IEC), substantially as a branch of the 
Institute for New Economic Thinking (INET)1 (see [10]). Those models introduce “Fitness” and 
“Complexity”, two non-monetary and non-income based metrics, where Fitness is a measure of 
competitiveness of countries and Complexity is the level of sophistication of products ([11 a), 
b)]). The “phase diagrams”, also “phase portraits”, of the “weather forecasts” (see Fig. 1) 
strongly suggest the usual schemes and tools of the analysis of a two-dimensional nonlinear 
dynamical system; their constructions and definitions are very similar to those describing the 
fluid dynamics regimes (“laminar flow”, “chaotic flow”) with their abrupt changes, that is one of 
the main tool for modeling weather 2. 

 
Fig. 1 “a) A finer coarse graining of the dynamics highlights two regimes for the dynamics of the evolution of 
countries in the fitness-income plane. There exists a laminar region in which fitness is the driving force of the 
growth and the only relevant economic variable in order to characterize the dynamics of countries. We argue that the 
evolution of countries in this region is highly predictable. There is also a second regime, which appears to be chaotic 
and characterized by a low level of predictability. In the laminar regime, we also find two different kinds of 
evolution patterns for the emergent countries and developed ones respectively; b) we report a continuous 
interpolation of the coarse grained dynamics to better illustrate the two regimes of predictability.” [11 b)] 
However, also the “weather forecasts” don’t seem to provide a proper answer to the issue of a 
sustainable economy with respect to environmental crisis that is our problem; besides, those 
models fit only with the brief-medium term. 
1 A cultural non-profit economic research organization, founded in 2009 by George Soros, to build a global 
community of new economic thinkers to create new ideas towards our economic future. To this aim INET gathers 
from all countries hundreds of economists, among them several Nobel Prizes like Krugman, Stiglitz, Sen and so on, 
despite the questionability of his founder.  
2 “Physicists make ‘weather forecasts’ for economies” is the title of a news on Nature (23/2/2015).   



In conclusion, all economic models [9], also those more critical and up to date we have above 
briefly summarized, keep separated the economy from the ecology. On the contrary, we are 
firmly convinced that a global “stationary state” model requests, in the perspective of a global 
sustainability, the study of the dynamics of an only one ecological-economic system, as 
Georgescu-Rӧgen and Daly did, but with the scientific tools to which we have just referred in the 
title.    
“Global”, as regards its applicability and the scenario that it would represent, the model we’ll 
introduce is “local” from the point of view of the small values allowed to the oscillations of 
variables; in other words, our reasoning is typical of the analysis of small oscillations in a 
neighborhood of a stable equilibrium.  

How realistic is the reduction to small oscillations with respect to the expected trends? We 
immediately provide the figures that support this reduction: a 2018 forecast by the International 
Monetary Fund predicts that up to 2023 world GDP rates, especially for advanced countries, will be 
half of those pre-crisis; referring to the data reported in Key World Energy Statistics 2018 by the 
International Energy Agency (IEA), the Agency of the OECD countries, it is easy to calculate that in 
the period 2011-2016 the growth rate of CO2 emissions was 0.0062/year, that is about a quarter of the 
growth rate in 2006 - 2011 (0,0233 / year).  
This behavior of two fundamental parameters, which will be used in the “4-variables first attempt” in 
Sect. 3, seems to legitimize resorting to the framework of the small oscillations.  
However, in the Appendix of this article we will give a definition and an analysis of the “stationary 
state” in a more general context than the one referring to the regime of small oscillations. 
   
2. Lotka-Volterra and Goodwin’s models: Hamiltonian systems  

 

The description of an economic trend in terms of a nonlinear two-dimensional dynamical system was 
performed, fifty years ago, by Richard M. Goodwin, when he applied the Lotka-Volterra model to 
the Economy, illustrating what has been defined as the “class struggle” model ([14]).  
The cycle “predator – prey” of  two populations in competition, that Alfred J. Lotka [15] and Vito 
Volterra [16] had proposed in the Twenties, has provided to the Applied Sciences – Populations 
Dynamics, Biology, Biophysics, Health Epidemics, Chemistry and, in particular, Economy – a model 
of oscillations between a minimum and a maximum, compatible with the existence along all the 
cycle of the two variables defining the model, because the minima are always greater than zero: a 
well-known model, incredibly largely applied, of a dynamical system in two dimensions, as many as 
are the variables. 
Just looking at the cycles of the model in its “phase portrait”, we’ll sketch the basis for an 
“ecological-economic” model of a global stationary state towards a sustainable economy. Several of 
the arguments hereafter exposed have been already raised in [9].  

“Cycle” has its definition there where it started, in Mathematics or Physics: a closed curve that 
describes the trajectory over time of a system that starting from an initial state to it comes back in a 
finite time. The behavior in time of the variables which generate a cycle is given by periodic 
functions, like sine or cosine, whose characteristic is the constant value, along all the time evolution, 
of the oscillation period and of the amplitude, minima and maxima. 
The oscillations in time between the maxima and minima of the variables studied by Economics can 
have a periodic behavior in time, in general, only for a limited time interval; for a longer time, the 
oscillation parameters do not remain constant but vary largely, thus losing their periodic 
characteristics. Then, no return of the system to its initial state and no cycle, but, if any, an open 



curve, typically a spiral, along which there is a continuous growth, loaded of social and 
environmental contradictions.  

In the Lotka-Volterra model the two variables are the number of individuals of the two species – 
predator and prey – that varies in time, in first approximation, as a sine or cosine (see Fig. 2). The 
phase displacement of the two curves is easily understood because one species eats the other one.  

 

Fig. 2 Behavior in time of numbers of prey and predators 

Correspondingly to that time behavior the phase diagram is constituted by cycles, so many how 
many are the possible initial conditions for the evolution; the phase diagram plane is the system 
phase space. In this space every point has the role of a well determined state; thus, the phase 
diagram gives a geometric vision of the orbits of the system as a sequence of all states along 
which the system evolves in time (see Fig. 3). 

Also in Economics the existence of cycles in the proper sense of the term is contemplated, when,  as 
in the Goodwin’s model, the number of “predators” and “preys” is replaced, respectively, by the 
“share of the product of the worker”, a variable linked to the wage rate, and the “employment rate” 
[14]. The employed workers have the role of predators, because the wages reduce profits and hence 
investments and this turns in an increase of unemployment; by this reason the model is also known as 
“Goodwin’s class-struggle model”.  

The phase portrait of the Lotka-Volterra and Goodwin’s models is represented in Fig. 3; only in the 
first quadrant because of the sense of the two variables, that are necessarily positive (q  > 0,   p  > 0). 

                                                    p 

                                                          q 

Fig. 3 Phase portrait of the predator-prey type model (drawn from [17])   

The orbits exhibit an elliptical behavior only near to the equilibrium, the point around which all 
curves turn. The construction of the orbits in Fig. 3 highlights how it is possible to do, starting from 
the vector field defined by the second members of differential equations underlying the model.  
The Lotka-Volterra and Goodwin models, and their cycles, represent typical “stationary” models: 
nothing is “steady”, i.e. static, but the evolution of the system along a cycle – oscillations over time 



between minima and maxima for both the variables – repeats itself with the same characteristics in 
any period. Also the revolution of the Earth around the Sun is, in first but good approximation, a 
stationary phenomenon.  

It’s worth to remark that Goodwin’s model is the first that tries to combine cyclical behavior and 
economic growth. The cycles ultimately depend on the fact that the Goodwin’s model is based on 
differential equations of evolution in time of Lotka-Volterra type. This is not usual in economic 
theories, as well as in other evolutionary sciences, because of the impossibility of defining a 
“dynamic” for the system as instead is possible in the powerful Newtonian scheme (the “force” is the 
cause of variation of the motion) thanks to the simplicity of phenomena that it schematizes. Indeed, 
what should play the role of the “force” for an economic or also an environmental system?  

Finally, the success of Lotka-Volterra model relies on the Hamiltonian character of that nonlinear 
two-dimensional dynamical system. A dynamical system is Hamiltonian if a function exists, the 
Hamiltonian function H, constant over time and that summarizes the information on the “energy” of 
the system, also when it has no more the meaning of energy as defined in Physics. 
The area enclosed by the cycle provides a numerical value connected to the energy, which grows 
with the length of the orbit; therefore if you run the same cycle N times, that is, you multiply its 
length by N, the required energy will correspondingly increase. If the orbit were not closed but were 
spiraling outwards as in a model of unlimited growth, the required energy would tend obviously to 
infinity. 

Since all the natural resources that supply energy to the system - fossil sources, minerals, raw 
materials, soil, water, biomass - are limited except for solar energy, a sustainable ecological-
economic model must satisfy the known constraint whereby in the cycle the speed of consumption of 
each natural resource is lower than the speed of its reproduction, or takes into account the availability 
of that resource to plan its consumption and give time to science and technology to find sustainable 
substitutes. 

The generalized Volterra model is the one extended to N ≥ 2 pairs of variables, and the number N is 
called “degree of freedom” of the system [18]. For our “stationary state” model we’ll use the 
generalized Volterra model transcribed in the Hamiltonian formalism [19]. 

A state of the system is a set of 2N variables (q1, .. , qN; p1, .. , pN),  a point in the 2N-dimensional 
phase space; but in order the system to be defined hamiltonian, in each pair (qi, pi) with i = 1, .., N, 
the variable pi must be “conjugated” to qi by means of the function H (q1, .. , qN; p1, .. , pN ).  
This “conjugation” involves the Hamilton equations, whose general form is reported in Appendix, 
and is the translation into the Hamiltonian formalism of the fact that each pair (qi, pi) consists of “one 
who eats the other”. This is the crux of the Hamiltonian character of the equations underlying the 
Lotka-Volterra, Goodwin and generalized Volterra models (N ≥ 2)  

This opens up the possibility of constructing a stationary state of an economic-ecological model by 
coupling an economic variable to an ecological one in a unique dynamical system, provided that in 
each pair there is “one that eats the other”. As we shall see, there are quite easily good candidates. 

The global character can then be ensured by using the global values provided for the model 
parameters by the dedicated data manuals; when using the values available for each geo-economic 
region – advanced countries, developing countries – or for a sub-region, the model will go on 
running in the same way. 

A final observation on the insistence on the term “stationary state” instead of the more usual “steady 
state”. The mathematical meaning of “steady” is “fixed”; and such are the equilibrium states of the 



differential equations of the Hamiltonian system at the base of the model. Thinking of the phase 
diagram, the “steady states” are a set of points, a set that is too “poor” to represent a global 
ecological-economic state. The stationary state can instead have a geometrically richer 
representation, if one manages to construct it as a set of orbits, such as, for example, the set of 
ellipses “around” of the equilibrium point of Fig. 3. 
The Hamiltonian “technicalities” applied to the generalized Volterra model (N ≥ 2) and to the 
following “first attempt” are given in Appendix. 
  

3. A first attempt with four variables (N = 2) 

The simplest case, after the one studied by Lotka-Volterra and Goodwin, N = 1, is that of identifying 
two pairs of variables, N = 2, which both enjoy the Hamiltonian “conjugation”, i.e., that exhibit a 
behavior of the predator-prey type. Good candidates to start with are the pairs: “Final energy 
consumption / GDP” and “CO2 emissions / Complexity”. 

Why precisely these four variables? Apart from their undoubted importance in economics and 
environmental studies, the most specific aspect is that each of the two proposed pairs is of the 
predator-prey type. Energy consumption has not always been indicated as the “engine” of the 
economy? Therefore, for its growth the GDP “eats” energy. Similarly, low carbon emissions 
correspond to an economic system capable of producing more sophisticated goods, that is, of higher 
“complexity” (the old, less sophisticated economies have higher carbon emissions). Thus, complexity 
“eats” CO2 emissions.  

We will assume that the Hamiltonian function of the model be constructed so as to enjoy the 
“separability”, a general property here applied in the case N = 2; it is not a bizarre hypothesis 
because it is the condition, even if only necessary, for the “integrability”of the differential equations 
at the base of the model, i.e. of its solution. Simply put, the description of the system, which is very 
complex, is simplified in many separate phase planes, two in our case, in each of which there is a 
phase diagram of the type shown in Fig. 3, that is, in each l-plane, l = 1, 2, pl is a function only of ql.  
However, between the several planes a sort of coupling remains, due to which the phase diagram of a 
plane may be affected by the diagram of another plane. We will then request, in addition to 
separability, the decoupling between the two planes we are dealing with: the oscillations over time 
(see Fig. 2) that generate the cycles of the phase diagram of the pair (q1, p1) must be completely 
independent of those that generate the cycles in the plane (q2, p2). 

This decoupling, required for the two pairs of “crossed” variables: “CO2 emissions / final energy 
consumption” and “Complexity/GDP”, would be false, for the first pair, if based on the historical 
trend of the two variables, but is becoming more and more realistic if we look at the sharp decrease 
in the growth rate of CO2 emissions in the last twenty years, previously reminded (Sect. 1) and the 
growing role of carbon-free energy sources. The correlation between Complexity and GDP is more 
complicated because a higher Complexity could promote GDP, but, in fact, the most creative and 
“intangible” assets are excluded from the composition of GDP. 
Following the above assumptions, we can combine the direct sum of two non-interacting 
predator-prey models; thus, the Hamiltonian H0 of the 4-variables economic-ecological model is 
given by the sum of two independent Hamiltonians H01 and H02: at this point, our model is 
mathematically composed by two copies of the same system. 

Remembering the role of Predator/Prey pairs, respectively GDP/CO2 emissions and 
Complexity/Energy consumptions, one has  

                                          H0 = H0 (q1, q2; p1, p2) = H01 + H02 =  



                    = ε1q1 + η1 p1 – a21 e q1 – a12 e p1 + ε2 q2 + η2p2 – a43 e q2 – a34 e p2, 

where, now:   

q1 = world energy consumptions; p1 = world GDP; q2 = CO2 world emissions; p2 = world 
Complexity; ε1 = world GDP growth rate; η1 = world energy consumptions growth rate; ε2 = world 
Complexity growth rate; η2 = CO2 world emissions growth rate; a12 = – a21 is the interaction 
coefficient between energy and GDP; a34 = – a43 is the interaction coefficient between CO2 
emissions and Complexity.   
Each H0l, l = 1, 2, is separable because, as it is evident, in each phase plane pl is a function only of ql 
and El, where El is the “energy” in the sense we have illustrated in sec.1; then H0 is separable.  
Such system has an equilibrium configuration corresponding to the point P in R4, where 
R4 is t h e  o r d i n a r y  v e c t o r  s p a c e  i n  f o u r  d i m e n s i o n s :  

                        P = ((log (ε1/a21), log (η1/a12); log (ε2/a34), log (η2/a43)),   

in which each ratio, that appears as argument of the log function, has to be greater than one. 
Under this condition P belongs to the first octant; it is a “center”, as it is usual for 
equilibrium points of Hamiltonian systems. 

Each of the phase diagrams belonging to an l-plane, l = 1,2, consists of an infinite number of cycles, 
and, among them, a cycle is obtained by choosing a pair of initial data, i.e., the initial state of the 
system. Determining the initial state - a point in the phase diagram - selects the cycle passing through 
that point because for each point only one cycle can pass (uniqueness theorem); therefore two cycles 
can be selected in the respective l-planes, C1 and C2, such as those represented in Fig. 4 a), b). 

       p1 = World GDP                                                   p2 = World Complexity  

                          C1                                                                          C2 

                                                                                               

 

                 q1 = World energy consumptions                          q2 = CO2 World Emissions 

 Fig. 4a)                                                                                      Fig. 4b) 

The cycles C1 and C2 are represented as ellipses; this representation is “faithful” in a “local” view, that is when we 
consider small oscillations around a stable equilibrium point (see Fig. 3).  

This four variables model is then susceptible of a suggestive geometric sketch: the topological 
product of the cycle C1 in the (q1,p1)-plane for the cycle C2 in the (q2,p2)-plane  gives rise to a torus, a 
surface like a ring-shaped donut (see Fig. 5 a), where there is also an indication on how to do the 
“product”); and the evolution of the system would be represented by a curve that winds the torus, the 
trajectory (see Fig. 5 b

                              
 

Fig. 5 a) a torus as a topological product of two ellipses                         b) a trajectory on the torus 



Further, each cycle Cl  is a level line determined by the equation H0l = El and is therefore 
parametrized by El; geometrically speaking, Cl is the “foliation” of a two dimensional torus 
(see Fig. 5 a)) like if we were cutting the latter with the l-phase plane. 

A more realistic model for a stationary state could request more pairs of variables than two. In this 
case the representation of the evolution loses the geometric character of visibility, so useful in the 
previous example. Then, it is reasonable to substitute the complex and no more representable figures 
as are those determined by the topological products of more than two cycles, with the corresponding 
analytic expressions: the so-called “quasi-periodic motions”, whose expression will be provided in 
Appendix.  
 

4. The “stationary state” 
 

The set of trajectories that wrap around the “donut” - the “Hamiltonian flows” on the torus - 
constitute the “stationary state” we were looking for, certainly mathematically richer and more 
versatile than the “steady states” advocated in the past. Each trajectory is what we have called “quasi-
periodic motion” on the torus; it is animated by two frequencies, that is, as many as there are degrees 
of freedom of the system (N = 2). The problem is now to calculate those frequencies, or to have a 
good approximate value, so as to achieve a resolution of the model. 

Then, the Hamiltonian formulation of the generalized Volterra model (N ≥ 2) provides the possibility 
of reaching a quantification when there are N constants of the “motion”: the actions Jk, each defined, 
by virtue of separability, in the k-plane of the pair (qk, pk) as integral along the cycle Ck : 

Jk =	∫ 𝑝!
	
#!

(𝑞!, E!)	𝑑𝑞k     k = 1, .. , N;     Ek  is the “energy” associated to the cycle Ck , 

(the numeric value of Jk is the area enclosed by Ck).  

If those N constants “commute” between them, in the sense required by the Hamiltonian formalism, 
there is the complete integrability of the system (see Appendix), that is the complete knowledge of 
the solutions of the differential equations at the base of the model: qi = qi(t), pi = pi(t), i = 1, .., N.  
This happens, for example, if an algebraic condition on the coefficients ruling the interaction 
among the different species is imposed [19], but it is too abstract with respect to its applicability in 
terms of our model [20].  

Anyway, the Hamiltonian theory supplies the frequencies of the quasi-periodic motion for N ≥ 2 
through the (N x N) matrix, whose elements are the derivatives of the “energy” with respect to the 
“actions”:  !

	!#!
	𝐸$,  (l, k = 1, .., N), where El is the “energy” of the cycle Cl.  

For N = 2, the decoupling hypothesis implies that the square matrix (2 x 2) of the frequencies is 
reduced to a “diagonal” form, i.e., a simpler form for their determination (the derivatives with 
“crossed” indices are null). A simplification that leaves us with the expression of two elliptical 
integrals very hard to calculate (see Appendix), but the adoption of the “local” point of view (“small 
oscillations”) comes to the aid allowing to obtain an estimate of good approximation for the two 
frequencies: 

ν1 = √ε1η1  ,     ν2 = √ε2η2 , 

that enables us to get the “quasi-periodic motion” of the system over time (see Appendix).  

In conclusion, each of the trajectories on the “donut” is a “quasi-periodic motion” on the torus, 
whose two frequencies can be approximated, or submitted to a computing program starting from the 



complete expression given in Appendix. Varying from one trajectory to another depends only on the 
initial state chosen, but the parameters defining ν1 and ν2 remain the same.  
All this is true if the two frequencies are real numbers between them incommensurable, while if their 
ratio were a rational number we would have the reduction from a quasi-periodic motion to a simply 
periodic motion; but this is as “unlikely” as finding a rational number as a result of the relationship 
between two real numbers. 

The “richness” that we want to attribute to the representation of a stationary state holds more 
generally, that is without any request for separability or decoupling, but in a decidedly more abstract 
context, by virtue of the theory of stability. We refer here to the classical Lyapunov stability, that is 
the stability with respect to the small perturbations on the initial data: the solution of a system of 
ordinary differential equations is stable if any other solution, which starts from an initial state 
“close” to that of the stable solution, goes on keeping itself as close as you want to the stable 
solution for all time 3. [21 a), b), c)] 
All solutions which start “close” to the stable ones are usually called “perturbed”. 

The Lyapunov stability responds to a general request in every scientific research on the phenomena 
of evolution over time: we want to ensure that if the initial state of the system is not precisely known, 
or if we made some small mistakes in preparing it, this fact does not affects all the evolution of the 
system. In other words, if the difference due to an error in the determination of the initial state is 
small, we would like that the distance between unperturbed trajectory and the perturbed one remains 
small for all time, otherwise the evolution would be unstable. 

Stability is therefore a property of control over the spatial evolution of a phenomenon for each 
duration. In fact, all the perturbed solutions are trajectories which, by definition of stability, are 
found within an arbitrarily thin “tube” formed by them, all the time (t → ∞), around the trajectory of 
the stable solution. 
Volterra has shown that the solutions of the differential equations of the generalized Volterra model 
are stable [19]; on the other hand, the stability continues to hold even if we “transcribe” that model in 
the Hamiltonian formalism, a not previously known result [22].  

Then, the stationary state of the Hamiltonian model based on an unique ecological-economic 
dynamical system with N ≥ 2 “degrees of freedom”, without any separability or decoupling request, 
is represented by the set of all those perturbed trajectories, the just before mentioned tube, when the 
proper ecological-economic parameters are adopted. 
Mathematically, this stationary state is a compact and invariant “manifold”, as it easy to show, 
moreover structured by infinite “sheets” of “energy”, to each of which a perturbed solution belongs 
(each “sheet” is determined by the initial data (q°i, p°i)) (see Appendix).  
Economists will not jump for joy, but the determination of such a manifold is a topos of the theory of 
dynamical systems; and provides an object a slightly less vague than a steady state. 
 

Conclusions 

A subsequent step towards a more realistic model can be to remove the decoupling conditions. This 
would imply to add some proper term to the Hamilton equations of the model, but also a slight linear 
modification to the second members yields a destruction of the closed orbits as the model at the base 
is not robust. Thus, one could question if there exist “Hamiltonian perturbations” to alter the  
3 Lyapunov stability is a topological property that would coincide with continuity if it were requested only for a 
finite interval of time and not for all time.  



Hamiltonian function in such a manner that the phase portrait be changed without losing the closed 
curves which are the essential feature of the model.  
The general answer to this problem can be found in the celebrated Kolmogorov-Arnold-Moser 
(KAM) theory; but at the present it could seem a bit to shoot a fly by a gun.  Anyway, results for a 
number of pairs N(even) ≥ 2 could be obtained if the Graff’s theorem [23] were applicable to the 
model Hamiltonian system, included the rigorously approximated values guaranteed for the 
frequencies of the existing quasi-periodic solutions. It is a different point of view from that we have 
followed, mainly referred to the Hamiltonian version of the generalized Volterra’s model; a focal 
problem is to verify if, in the case N ≥ 2, the Hamiltonian function is likely to satisfy the conditions 
for which the Graff’s theorem holds. It is a suggestion for further steps of our job. 
We know well that priorities and problems concern something else, however there is an important 
aspect that legitimizes such an “abstract” space for reflection: researchers must play their role, on 
pain of being responsible, on their part, for the consequences for the whole humanity. As the 
surprising failure of the economic mainstream has taught, whose theories and models, followed or 
justified by the governments of the most important countries of the world, have not been able to 
foresee the current global economic crisis. Similarly, apart from isolated exceptions, it was serious to 
ignore the environmental crisis and the consequent urgency of the “spaceship earth” economy 
proposed by Kenneth Boulding more than 50 years ago or, a decade later, the need to reach a global 
“steady state”, as claimed by Georgescu-Rögen and Daly. There is therefore space and need to 
emphasize that other conceptions, other scientific instruments and models are possible, different from 
the dominant ones that have proved to be so seriously inadequate. 

 

Appendix 

In his celebrated book about the struggle for life [19], Volterra introduced a more general model in 
order to describe the competition of n biological species that, two by two, eat each other. Then, the 
system of differential equations to represent this competition can be written 

1)                                 	𝑥!̇̇ = 	 ε# 𝑥# 	+ 		
$
%!
		∑ 		' 𝑎	#'	𝑥	#		𝑥	'         (i, j  = 1, 2,…, n)  ; 

where xi is the number of individuals of the species i (xi > 0), the εi’s are the natural growth 
coefficients, aij’s are the interaction coefficients linked to the probability of encounters between the 
individuals of two species i, j. It’s worth noting that if all εi’s have the same sign it’s impossible both 
a stationary solution and small fluctuations. With the change of variables xi → xi/βi, one can assume 
βi = 1.  The differential equations system 1) is the generalized Volterra model because is a 
generalization of the case n = 2 ([18], [19]). Following [19], we define the quantity of life qi, i.e., how 
many individuals of the species i are still alive, step by step in time, till an instant t: 

2)                          qi  =		∫ 𝑥#	
(
) (𝜏)	𝑑𝜏	,         xi (0) = 0            (i = 1, .., n) , 

that allows to rewrite the system 1) as a system of second order differential equations 

1’)                                          𝑞̈i  =   εi	𝑞	̇ # 	  + 𝛴	'	𝑎	#'	𝑞̇	#		𝑞̇	'               (i, j  = 1, .. , n). 

Then, the function                      H’ = 	∑ 	(	% 𝜀	𝑖𝑞𝑖 −	𝑞̇𝑖 )                   (i = 1, .., n) 

is a first integral of 1’). If now we introduce the variables 



                                             pi = log	𝑞̇$ – ½ 𝛴	'	𝑎	#'	qj           (i, j  = 1, .. , n), 

the function H’ becomes 

3)              H (q1, .. , qn; p1, .. , pn)   =  	∑ 		𝑖 𝜀	!𝑞#  – ∑ 		# 𝑒 	
	(,!

	-1/2	.	$	/	!$	0$)	     (i = 1, .., n) 

and the corresponding Hamilton equations are: 

4)                                   𝑞̇i    =  		 !
!"!

 H									𝑝̇i    = −	 2
20!
	H             (i = 1, .., n) , 

where now H is given by 3) and is a first integral of 4), that is		 3
3(
	𝐻 = 	0  as one can directly 

verify1 

The Hamilton equations 4) make also explicit what has to be meant for conjugacy relationship, that 
each pair of Hamiltonian variables (qi, pi) must satisfy, synthetized in the association 

𝑞̇i      					 !!"!  ;   𝑝̇i     							−	 𝜕𝜕𝑞𝑖
 . 

In view of finding separability for the Hamiltonian 3), i.e., that every pi can be expressed as a 
function only of its conjugate qi and some constants, one can show the existence of the following n 
first integrals of the Hamiltonian system 4), time dependent but functionally independent:  

5)                   φj (q, p, t) =   pj + ½ ∑ 𝑎#'	
# 𝑞#  +  εj t        (i  = 1, .. , n;  j = 1, .. , n) 2.  

We can easily eliminate time t from 5), but the final expressions we obtain for each φj (q, p) –linear 
in the single pj and in all qi’s – do not lead to the separability, such as we have previously requested. 
Another bad news is that the φj’s don’t “commute” 3 and, by this reason, our system is not completely 
integrable 3, i.e., it cannot enjoy all rich properties that compete to such systems, included the 
existence of quasi-periodic solutions, fundamental for our model.   

At this point it is correct to notice that in his paper Volterra gives an algebraic characterization for a 
completely integrable evolution of the system generated by 3), essentially through a simple linear 

1  *
*+
	𝐻 = 	0	 is a general feature of the Hamiltonian formalism, whatever be the analytic expression of H. In fact: 

%
%&
	𝐻 = 	∑ 	('(

')!
	 𝑞̇* +	

'(
'+!

𝑝̇*)* =	∑ 	('(
')!
	 '(
'+!
	–	 '(

'+!
	 '(
')!
)	* , i = 1, .., n, where the substitution in the last equality is 

possible only because  qi and pi are thought as solutions of 4), even if not explicitly known; the result is zero, thus 
verifying that H is a constant of motion. This operation explains well the meaning of “derivative along the motion”. 
2 The derivative with respect to time of each φj is performed in this way  
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$%!
$&"
	 𝑞̇# +	

$%!
	$("

	 𝑝̇#)	+		
$%!
$)
		= 	∑ 	($%!

$&"
	 $*
$("
	–	$%!

$("
	 $*
$&"# ) + $%!

$)
		= 
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)5		#	 + ε j = 0, 

where   k, i  = 1, .. , n;    δij = 0   for   i ≠ j   and   δij = 1   for   i = j. Let’s remark, even here, that in the second 
equality we can do that substitution of  𝑞̇" and  𝑝̇" only because we are performing a “derivative along the motion”.  
3 Given two functions  f, g  depending on the 2n variables (qi, pi) in a 2n phase space, one defines the Poisson 
bracket between them: {f, g} = 		∑ 	%	$0

$&"

$1
$("

− $0
$("

$1
$&"
)			#	 , i = 1, .. , n.  If {f, g} = 0, i.e., if f and g commute, they are 

said to be in involution. If the Hamiltonian system admits n constants of motion and they are in mutual involution, 
the system is completely integrable, that is one can obtain by analytical calculations the solutions of the Hamilton 
equations. In our case it results {φi, φj} = aij, thus no involution, no complete integrability. 
 



transformation of the first integrals 5) ([19], see part II, sect. 5); but this kind of approach makes 
problematic the application of that condition for complete integrability to an economical-ecological 
context written in the Hamiltonian formalism [20].  Thus, we have to abandon, even if grudgingly, 
the rich cornucopia provided by the complete integrability of the generalized Volterra model; and in 
the lack of that exploitation, we are obliged to do many assumptions, the fundamental of which is the 
existence of a closed curve Cj (like a cycle of Fig. 3) in each phase plane (qj , pj), associated to the 
oscillations that the variables qj , pj run, independently, in time. The existence of such a cycle is not 
easy in general to demonstrate, unless one assumes not only the separability of the Hamiltonian 
function but also its decoupling, as we have done in Sect. 3. When a cycle exists in each phase plane 
(qj, pj), it can be shown through several steps implying only the separability and not a decoupling 
hypothesis [24], that the final expression for the qi’s is that of a quasi-periodic motion:  

6)                                    qi (t) = Si (ν1t + φ1, .. , νnt + φn)                     (i  = 1, .. , n) ,  

where the Si’s are periodic functions of each argument, of period 1, a “multi-periodicity”; and all 
frequencies {ν1,..,νn} are given by the derivative of the energy E with respect to the “actions” Jj: 

7)                                                        νj  =  2
27$
𝐸                                   (j = 1, .. , n) . 

 Jj is the “action”, so called because in Mechanics has the physical dimension of the product of an 
energy for a time, that we already defined in Sect. 4 and report here for the reader’s convenience:  

8)                                        Jj =∫ 	𝑝'	
	
8$

8𝑞' , 𝑐$, . .		 , 𝑐9<		𝑑𝑞'              (j = 1, .. , n) . 

The functions Si express the quasi-periodic character of the “motion”, also in the case where a 
decoupling condition is assumed, and the way we have followed highlights, without specialized 
further considerations, the intrinsic character of the “quasi-periodic” motions to the structure of 
Hamiltonian function [24]. Moreover, by that way, one doesn’t make the mistake to which the 
students which follow the traditional method are induced – and that seems to appear stealthily also in 
some renowned university book – to think that the frequency νj given in 7) is the frequency of qj. On 
the contrary, it is not true, in general, that the qi’s are periodic functions of time.  

About frequencies of our model (N = 2), there is to observe that their determination requests a bit of 
caution because, if the two systems were coupled frequencies should be given by a not diagonal 
matrix whose four elements are the derivatives (see Sect. 4):  ∂El /∂Jk,  l, k = 1, 2 [20]. Luckily, the 
hypothesis of reciprocal independence between the two systems of our model reduces that matrix to a 
diagonal one, off-diagonal elements being zero, each diagonal element being  

∂El /∂Jl,       l  = 1, 2. 

Because it appears easier to calculate ∂Jl /∂El and after to take the inverse, as it is permitted by 
diagonality, one obtains in a neighborhood of an equilibrium   

7’)      νl  =	
2:,
27,
	= 1/(27,

2:,
)	 = ?2∫ ;,30,

	[=$->?@	(A-.(:,	–	/,	A,	(0,))/;,	)	]
0,,F/G
0,,F#9

A ,  l = 1,2,  

where ql,min and ql,max are the two intersections of the ellipse with ql  axis, as it is usual when dealing  
with a periodic motion whose phase portrait is an ellipse (see Fig. 6).  
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Fig. 6 If a point turns a complete round on the ellipse here above, the projection of the point on the axis 
q will double the path; therefore the time required, the period, is twice the time to go from ql,min to ql,max  
(the factor 2 in 7’)). The straight line recalls the caution to be taken because the graph of an ellipse is 
not that of an invertible function.  

For the sake of generality, for an evolution not limited to small oscillations the two required 
frequencies are:  

7”)                            νl   =		
2:,
27,
	=		∮ ;,30,

	[=$->?@	(A-.(:,	–	/,	A,	(0,))/;,	)	]
  ,   l = 1,2,    

where integration is extended over the whole cycle Cl, that in general is not an ellipsis (see 
Fig. 3).  In 7’) and 7”) the coefficients al, bl depend on the parameters of H0l. 

In front of the cumbersome calculations implied by the integration 7’) or 7”) – for a good 
review about the methods, see [25] – an approximation is available, that seems very 
suitable for an ecological-economic model whose solutions are small oscillations in time 
(see Sect. 1). Then, a good estimate for the two frequencies 7’) can be found, by simple 
calculations, for each of them in its l-plane as the oscillation frequency associated to the 
orbit near the equilibrium (the projection of the point P in the l-plane). This well-known 
procedure demands a linearization of the Hamilton equations near P; thus, one obtains   

9)                                           ν1 = √ε1η1,     ν2 = √ε2η2   .  

 

About stability 

Volterra had already demonstrated Lyapunov stability for his generalized model, but only in the 
natural coordinates [18]. The consequences of giving a Hamiltonian form to equations system 1) 
have been explored also in [26], without giving the demonstration of existence and stability, that 
would involve a too complex matter (see [27], [28]).  

In front of those difficulties it is a bit strange that none has before resorted to the powerful simplicity 
of the Lyapunov’s method. In fact, one of its theorems [21 b)], applied to our case, provides the 
stability of the unperturbed solution of 4) in presence of first integrals like those given by 5), a 
conditioned stability, i.e., only in Rn [22]; but under a suitable form for those first integrals, it can be 
shown that a tout-court stability holds in R2n.  

Further, since their stability has been proved – stability holds also for a state consisting by emptiness 
– then the equilibrium points of 4) exist, because the property of stability implies for a solution its 
existence in the future. A good performance, if one thinks of the laboriousness of such a 
demonstration in natural coordinates ([18], [19]).  



Our stationary state, the set S of all trajectories corresponding to perturbed solutions is bounded, 
i.e., it can be contained in a finite volume of R2n, and is closed, i.e., it contains also the elements of its 
border, always by virtue of stability. Now, let’s denote by M = S U∂S, the union of S and its border; 
then, because in each finite dimensional vector space RN a set is defined “compact” if it is bounded 
and is closed, then M ∈ R2n is compact.  

Further, the set M is an invariant compact set of R2n (an invariant compact manifold of R2n). The 
invariance in time is due to the same character of the set M, whose elements are solutions of 
equations 4): if the state (q(t0), p(t0)) belongs to M  at an arbitrary instant  t0, the solution (q(t, t0), p(t, 
t0)) that starts from (q(t0), p(t0)) will belong, by definition, to M for any t > t0 ; this property is called 
positive invariance, that for autonomous systems, i.e., not explicitly depending on time, can be 
extended also to all  t  <  t0 , that is, the negative invariance, thus realizing the invariance for any 
time.   

We can add that M is not the poor and twisted set that it could seem, nor a destructured object like an 
ameba, because any perturbed solution belongs to an unique value of “energy” E; thus, to M can be 
uniquely associated a variety of infinite layers, where each of them is a surface level E, 0 < E ≤ Ē and 
Ē is the maximum value that E takes when x0 varies in the closure of the ball containing all perturbed 
initial data.  
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